Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Richeng Xuan, ${ }^{\mathbf{a} *}$ Weixiao Hu, ${ }^{\text {a }}$ Zhongyu Yang ${ }^{\text {a }}$ and Rirong Xuan ${ }^{\text {b }}$
${ }^{\text {a }}$ College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China, and ${ }^{\text {b }}$ Zhejiang Research Institute of Metallurgy, Hangzhou 310023, People's Republic of China
Correspondence e-mail: xuanrch@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.023$
$w R$ factor $=0.082$
Data-to-parameter ratio $=13.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

DL-2-Amino-2-thiazoline-4-carboxylic acid trihydrate

In the title compound, $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, the 2-amino-2-thiazoline-4-carboxylic acid molecule is in a zwitterionic form and shows amino-imino tautomerism. There are intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{N}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, forming a three-dimensional network.

Comment

Compounds with both amino and carboxylic acid groups in their molecular structure, such as amino acids, can exist as zwitterions and often cocrystallize with solvent molecules in the solid state. In a zwitterion, both charged groups, COO^{-} and $\mathrm{NH}_{3}^{+}\left(\right.$or NH_{2}^{+}or $\left.\mathrm{NH}^{+}\right)$, may interact with each other and with the aqueous solvent by means of electrostatic, polarization and hydrogen-bonding interactions. In the 2-amino-2-thiazoline-4-carboxylic acid molecule, there are one aminogroup, one imino N atom in the heterocycle, and one carboxylic acid group. To determine its specific structural features, we have performed an X-ray structural analysis of the title compound, (I).

(I)

This compound is a zwitterion, incorporating three water molecules as crystallization solvent (Fig. 1 and Table 1). The very similar bond distances of $\mathrm{C} 3-\mathrm{N} 1$ and $\mathrm{C} 3-\mathrm{N} 2$ indicate tautomerism between amino N2 and imino N1. The almost symmetric $\mathrm{O} 1-\mathrm{C} 4-\mathrm{O} 2$ group suggests also conjugation of the carboxylate.

A detailed analysis of the crystal packing shows that the hydrogen bonds involving $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ generate two-dimensional networks (Fig. 2 and Table 2). The hydrogen bonds $\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 4^{\mathrm{i}}$, O5$\mathrm{H} 5 B \cdots \mathrm{O} 4^{\mathrm{ii}}, \quad \mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\mathrm{i}}, \quad \mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 2^{\mathrm{iv}}$, and $\mathrm{N} 1-$ H1 $\cdots \mathrm{O}^{\text {iv }}$ [symmetry codes: (i) $x-\frac{1}{2},-\frac{1}{2}-y, z$; (ii) $x-\frac{1}{2},-y$, $-z$; (iv) $\left.\frac{1}{2}+x,-\frac{1}{2}-y, z\right]$ connect adjacent two-dimensional networks (Fig. 3).

Experimental

The title compound was synthesized in our laboratory (Xuan et al., 2003). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a saturated aqueous solution at room temperature.

Figure 1
The molecular structure of (I), showing the atomic numbering. Displacement ellipsoids are drawn at the 50% probability level for non- H atoms.

Figure 2
Packing diagram of (I), viewed along the a axis, showing, as dashed lines, the hydrogen-bonding and short-contact interactions within a twodimensional molecular network.

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=200.22$
Orthorhombic, $P 2_{1} a b$
$a=8.0835$ (4) \AA
$b=8.1546$ (3) \AA ̊
$c=13.7591$ (7) \AA
$V=906.97(7) \AA^{3}$
$Z=4$
$D_{x}=1.466 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Rigaku R-AXIS RAPID	1968 independent reflections
\quad diffractometer	1620 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.019$
Absorption correction: multi-scan	$\theta_{\max }=27.4^{\circ}$
$(A B S C O R ;$ Higashi, 1995)	$h=-10 \rightarrow 10$
$T_{\min }=0.849, T_{\max }=0.917$	$k=-10 \rightarrow 10$
8161 measured reflections	$l=-17 \rightarrow 17$

Figure 3
Packing diagram of (I), viewed along the c axis, showing, as dashed lines. the hydrogen-bonding interactions between adjacent molecular networks.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.082$
$S=1.07$
1968 reflections
146 parameters
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0444 P)^{2}\right]$ where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.004$
$\Delta \rho_{\text {max }}=0.23 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.15 \mathrm{e}^{\AA^{-3}}$
Extinction correction: SHELXL97
Extinction coefficient: 0.010 (2)
Absolute structure: Flack (1983), 852 Friedel pairs
Flack parameter $=0.49(9)$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{S}-\mathrm{C} 3$	$1.738(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.533(4)$
$\mathrm{S}-\mathrm{C} 1$	$1.814(2)$	$\mathrm{C} 3-\mathrm{N} 2$	$1.308(3)$
$\mathrm{O} 1-\mathrm{C} 4$	$1.243(3)$	$\mathrm{C} 4-\mathrm{O} 2$	$1.250(3)$
$\mathrm{N} 1-\mathrm{C} 3$	$1.313(3)$	$\mathrm{C} 4-\mathrm{C} 2$	$1.534(3)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.454(3)$		
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 2$	$118.88(19)$	$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 2$	$115.5(2)$

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 4^{\mathrm{i}}$	0.825 (19)	1.94 (2)	2.759 (3)	175 (4)
$\mathrm{O} 5-\mathrm{H} 5 B \cdots \mathrm{O} 4^{\mathrm{ii}}$	0.854 (19)	1.94 (2)	2.787 (3)	174 (4)
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O} 2$	0.839 (18)	1.915 (19)	2.749 (3)	173 (4)
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 1^{\text {iii }}$	0.846 (18)	1.97 (2)	2.802 (3)	166 (4)
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{O} 1$	0.821 (18)	1.920 (19)	2.731 (3)	169 (3)
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{~N} 1^{\text {iii }}$	0.846 (18)	2.80 (3)	3.343 (3)	123 (3)
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 3^{\text {iv }}$	0.848 (17)	1.972 (18)	2.816 (3)	173 (3)
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\text {v }}$	0.867 (18)	1.914 (19)	2.772 (3)	170 (3)
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 1^{\text {vi }}$	0.856 (17)	2.98 (3)	3.411 (3)	114 (2)
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 3^{\text {vii }}$	0.856 (17)	2.08 (2)	2.862 (3)	152 (3)
$\mathrm{C} 1-\mathrm{H} 18 \cdots \mathrm{O}$	0.97	2.86	3.288 (4)	108
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{O} 4$	0.97	2.93	3.640 (3)	131
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\text {i }}$	0.97	2.78	3.744 (4)	175
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 2^{\text {iv }}$	0.98	2.84	3.637 (3)	140

H atoms bonded to N and O atoms were located in difference Fourier maps and refined isotropically. Refined distances were $\mathrm{O}-\mathrm{H}$ $=0.846$ (18) -0.855 (19) \AA and $\mathrm{N}-\mathrm{H}=0.848$ (17)-0.867 (18) $\AA . \mathrm{H}$ atoms bonded to C atoms were placed at calculated positions, refined
using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom), and $\mathrm{C}-\mathrm{H}$ distances were constrained to $0.97-0.98 \AA$. The Flack (1983) parameter indicates that the sample, itself a racemate in a space group with glide planes, is twinned by inversion.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC \& Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC \& Rigaku (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, Akishima, Tokyo, Japan.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Xuan, R. C., Hu, W. X. \& Yang, Z. Y. (2003). Synth. Commun. 33, 1109-1112.

